中国独居老年人孤独感风险列线图模型的建立与验证
作者:
作者单位:

作者简介:

女,硕士在读,学生

通讯作者:

基金项目:

重庆市教委科学技术研究计划项目(KJQN202213202)


Establishment and validation of a nomogram model for predicting the risk of loneliness among elderly people living alone in China
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 构建中国独居老年人孤独感风险列线图模型并验证。方法 选取2018年中国纵向健康寿命调查(CLHLS)数据中2 252名65岁及以上独居老年人,将其按7∶3随机分配为训练组(1 576例)与验证组(676例)。研究采用Lasso回归筛选变量、多因素logistic回归分析独居老年人孤独感影响因素,构建列线图预测模型,并通过ROC曲线与Hosmer-Lemeshow检验评估模型区分度与校准度。并调查辽宁省锦州市凌河区306名独居老年人进行外部验证。结果 在2 252名独居老年人中,1 138名(50.5%)存在孤独感。logistic回归分析显示,自评健康状况、睡眠质量、社区照料、生活来源、听力困难、兴趣丧失被纳入预测模型(均P<0.05)。训练组与验证组数据绘制的ROC曲线下面积分别为0.769(95%CI:0.746~0.792)和0.740(95%CI:0.704~0.777),Hosmer-Lemeshow校准曲线拟合度佳(训练组P=0.167,验证组P=0.071,外部验证P=0.351)。结论 我国独居老年人孤独感风险高,列线图模型预测性能良好,可作为预测独居老年人孤独感的可靠工具。

    Abstract:

    Objective To establish and validate a nomogram model for predicting the risk of loneliness among elderly people living alone in China. Methods Data from the 2018 China Longitudinal Health and Longevity Survey (CLHLS) were used to select 2,252 elderly people aged 65 years and older living alone, then they were randomly assigned in a 7∶3 ratio to a training group (1,576 cases) and a validation group (676 cases). Lasso regression was conduct to screen variables, multivariate logistic regression analysis was performed to identify factors influencing loneliness among elderly people living alone, a predictive nomogram model was established, and its discriminatory ability and calibration were assessed by using ROC curves and the Hosmer-Lemeshow test. External validation was conducted among 306 elderly people living alone in Linghe District, Jinzhou City, Liaoning Province. Results Among the 2,252 elderly people living alone, 1,138 (50.5%) experienced loneliness. Results indicated that, self-rated health status, sleep quality, community care, source of livelihood, hearing difficulties, and loss of interest were included in the predictive model (all P<0.05). The area under the ROC curve for the training group and the validation group was 0.769 (95%CI: 0.746-0.792) and 0.740 (95% CI:0.704-0.777), respectively and the Hosmer-Lemeshow goodness-of-fit test showed good model fit (training group P=0.167, validation group P=0.071, external validation P=0.351). Conclusion The risk of loneliness among elderly people living alone in China is high, and the nomogram model demonstrates good predictive performance, making it a reliable tool for predicting loneliness among elderly people living alone.

    参考文献
    相似文献
    引证文献
引用本文

郭欣如,陈娜,李闯,林可心,张会君.中国独居老年人孤独感风险列线图模型的建立与验证[J].护理学杂志,2025,40(18):96-100

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-04-12
  • 最后修改日期:2025-06-26
  • 录用日期:
  • 在线发布日期: 2025-10-22