语音和心电特征对轻度认知障碍老年人早期筛查的价值研究
作者:
作者单位:

作者简介:

女,硕士在读,学生

通讯作者:

基金项目:

国家重点研发计划项目(2023YFC3603602);国家自然科学基金面上项目(72174095);江苏省社会发展面上项目(BE2022802);2024年江苏省研究生科研创新计划项目(KYCX24_2110)


The value of speech and electrocardiogram features in the early screening of mild cognitive impairment among older adults
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 探讨语音联合心电特征分析在老年人轻度认知障碍早期筛查中的应用价值,为轻度认知障碍早期诊断和个体化护理干预提供参考。方法 采用便利抽样法,于2024年7-9月在南京市栖霞区社区招募365名老年人为研究对象,以蒙特利尔认知评估量表-北京版评估结果为金标准,将老年人分为轻度认知障碍组253人和认知功能正常组112人。通过“偷饼干图片”任务采集语音数据,并同步记录心电信号。采用多因素logistic回归分析绘制工作特征曲线并计算ROC曲线下面积,探究语音、心电相关特征对老年人发生轻度认知障碍的预测价值。结果 多因素logistic回归分析结果显示,长停顿/总讲话持续时间loudness_sma3_percentile50.0、匹配分数、HRV_IQRNN、HRV_HTI是发生轻度认知障碍的影响因素(均P<0.05)。ROC曲线提示,语音特征、心电特征ROC曲线下面积(AUC)分别为0.694、0.625,二者联合筛查能力最高(AUC=0.728)。结论 语音和心电特征联合分析能够有效提升老年人轻度认知障碍的筛查准确性,为轻度认知障碍高风险人群的早期筛查提供了新的思路。

    Abstract:

    Objective To explore the application value of combined speech and electrocardiogram (ECG) feature analysis in the early screening of mild cognitive impairment (MCI) among older adults, and to provide a reference for early diagnosis and individualized nursing interventions of MCI. Methods A convenience sampling method was adopted to recruit 365 community-dwelling older adults from Qixia District, Nanjing, between July and September 2024. Based on the Montreal Cognitive Assessment-Beijing (MoCA-B), participants were classified into an MCI group (n=253) and a cognitively normal group (n=112). Speech data were collected through the "Cookie Theft Picture" task, and ECG signals were synchronously recorded. Multivariate logistic regression analysis was used to construct working characteristic curves and calculate the area under the ROC curve (AUC), to evaluate the predictive value of speech and ECG features for MCI in older adults. Results Multivariate logistic regression analysis indicated that, long pauses/total speech duration, loudness_sma3_percentile50.0, matching score, HRV_IQRNN, and HRV_HTI were major influencing factors of MCI (all P<0.05). ROC curve analysis showed that, the AUC for speech features and ECG features were 0.694 and 0.625, respectively, and the combined screening performance was highest with an AUC of 0.728. Conclusion The combined analysis of speech and ECG features can effectively improve the screening accuracy for MCI in older adults, so it provides a new perspective for early screening of high-risk populations.

    参考文献
    相似文献
    引证文献
引用本文

王萌,宋玉磊,殷海燕,梅紫琦,柏亚妹,徐桂华.语音和心电特征对轻度认知障碍老年人早期筛查的价值研究[J].护理学杂志,2025,40(18):90-95

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-04-15
  • 最后修改日期:2025-06-24
  • 录用日期:
  • 在线发布日期: 2025-10-22