先天性心脏病患儿术后喂养不耐受风险预测模型构建
作者:
作者单位:

作者简介:

女,硕士,主管护师

通讯作者:

基金项目:


Development of feeding intolerance prediction model in children with congenital heart disease after cardiac surgery
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 构建先天性心脏病患儿术后喂养不耐受的风险预测模型,为识别高危患儿提供依据。方法 回顾性收集265例年龄<1岁的先天性心脏病患儿的临床指标数据进行模型训练和预测,预测模型包括逻辑回归、支持向量机、随机森林、决策树、梯度提升决策树、极限梯度提升和朴素贝叶斯共7种机器学习算法,并进行评价和比较。采用准确率、精确率、召回率、F1值和受试者工作特征曲线下面积(AUC)评价模型性能。结果 先天性心脏病患儿术后喂养不耐受发生率为49.4%。7个机器学习模型中,极限梯度提升模型表现最好,AUC为0.914(95%CI:0.849, 0.967)。血管活性药物评分、喂养前机械通气时间、喂养启动时间和月龄等10个因素是先天性心脏病患儿术后发生喂养不耐受的影响因素。结论 先天性心脏病患儿术后喂养不耐受发生率较高,极限梯度提升模型构建的喂养不耐受风险预测模型具有较好的性能,可能有助于临床决策和优化个体化肠内营养管理。

    Abstract:

    Objective To develop a model for predicting feeding intolerance risk in children with congenital heart disease (CHD) after cardiac surgery, and to provide reference for identifying children at high risk. Methods A retrospective cohort study of 265 children younger than 1 year with CHD was conducted. Clinical data were collected for model training, and seven machine learning algorithms were performed including logistic regression, support vector machine, random forest, decision tree, gradient boosting decision tree, extreme gradient boosting, and plain Bayesian. Accuracy, precision, recall, F-score and the area under the receiver operating characteristic curve (AUC) were used to evaluate the model performance. Results The incidence of feeding intolerance in children with CHD after cardiac surgery was 49.4%. Among the seven machine learning algorithms, the performance of the extreme gradient boosting was the best, with an AUC of 0.914 (95%CI:0.849, 0.967). Ten factors including vasoactive-inotropic score, duration of mechanical ventilation before feeding, feeding initiation time, age, etc.affected feeding intolerance in children with CHD. Conclusion Feeding intolerance is relatively high in children with CHD after cardiac surgery. The prediction model developed based on the extreme gradient boosting demonstrates good performance, which may contribute to clinical decision-making and optimization of individualized enteral nutrition management.

    参考文献
    相似文献
    引证文献
引用本文

岳明叶,史嘉玮,王慧华,胡玉婷,熊莉娟.先天性心脏病患儿术后喂养不耐受风险预测模型构建[J].护理学杂志,2025,(8):11-16

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-10-05
  • 最后修改日期:2024-11-27
  • 录用日期:
  • 在线发布日期: 2025-05-27