2型糖尿病住院女性患者尿失禁风险预测模型构建
作者:
作者单位:

作者简介:

女,硕士在读,学生

通讯作者:

基金项目:

华中科技大学同济医学院护理学院2021年自主创新基金(2021-3-7)


Development of a risk prediction model for urinary incontinence among female inpatients with type 2 diabetes
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 构建2型糖尿病住院女性患者尿失禁风险预测模型,为制订针对性的干预措施提供参考。 方法 通过系统文献回顾确定2型糖尿病住院女性患者尿失禁影响因素条目池,经专家咨询确定调查问卷,用于对536例2型糖尿病住院女性患者进行调查。通过Lasso回归分析筛选风险预测因子,在此基础上采用多因素logistic回归分析进一步探讨并建立列线图预测模型。使用Bootstrap重采法进行模型内部验证。 结果 腰围、运动年限、饮水量、尿道感染、慢性咳嗽、便秘、生殖系统手术、焦虑、糖尿病神经病变、糖化血红蛋白、血肌酐是2型糖尿病女性患者尿失禁的影响因素(均P<0.05)。利用上述指标构建列线图模型,其预测2型糖尿病女性住院患者尿失禁发生的曲线下面积为0.893(95%CI:0.866~0.919),内部验证中曲线下面积为0.881。 结论 绘制的列线图模型具有良好的区分度和校准度,能直观、简洁地为2型糖尿病住院女性患者提供个体化的尿失禁风险预测。

    Abstract:

    Objective To develop a risk prediction model for urinary incontinence among female inpatients with type 2 diabetes, so as to provide a reference for developing targeted intervention. Methods The item pool of influencing factors for urinary incontinence in female inpatients with type 2 diabetes was determined through systematic literature review, which was used to form a questionnaire after expert consultation, then the questionnaire was utilized to investigate 536 female inpatients with type 2 diabetes. Risk predictors were screened by LASSO regression analysis, based on which multi-factor logistic regression analysis was conducted to further explore and develop a nomogram prediction model. Internal validation of the model was performed using Bootstrap calculation. Results Waist circumference, exercise years, water intake, urinary tract infection, chronic cough, constipation, reproductive system surgery, anxiety, diabetic neuropathy, glycosylated hemoglobin, and serum creatinine were the influencing factors of urinary incontinence in female inpatients with type 2 diabetes (all P<0.05). Then a nomogram model was constructed using the above factors, the area under the curve for predicting urinary incontinence in female inpatients with type 2 diabetes was 0.893 (95%CI: 0.866-0.919), and the area under the curve in internal validation was 0.881. Conclusion The nomogram model has good discrimination and calibration, which can intuitively and concisely provide individualized urinary incontinence risk prediction for female inpatients with type 2 diabetes.

    参考文献
    相似文献
    引证文献
引用本文

欧阳兰欣,徐蓉.2型糖尿病住院女性患者尿失禁风险预测模型构建[J].护理学杂志,2023,38(8):25-29

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-10-12
  • 最后修改日期:2022-12-26
  • 录用日期:
  • 在线发布日期: 2023-12-29